Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells†
نویسندگان
چکیده
Biomineralization utilizes biological systems to synthesize functional inorganic materials for application in diverse fields. In the current work, we enable biomineralization of quantum confined PbS and PbS–CdS core–shell nanocrystals and demonstrate their application in quantum dot sensitized solar cells (QDSSCs). An engineered strain of Stenotrophomonas maltophilia is utilized to generate a cystathionine g-lyase that is active for the biomineralization of metal sulfide nanocrystals from a buffered aqueous solution of metal salts and L-cysteine. In the presence of lead acetate, this enzymatic route generates rock salt structured PbS nanocrystals. Controlling the growth conditions yields 4 nm PbS crystals with absorption and photoluminescence peaks at 910 nm and 1080 nm, respectively, consistent with the expected strong quantum confinement of PbS at this size. Quantum yields (QY) of the biomineralized PbS quantum dots, determined after phase transfer to the organic phase, range between 16 and 45%. These are the highest reported QY values for any biomineralized quantum dot materials to date and are comparable with QYs reported for chemically synthesized materials. Subsequent exposure to cadmium acetate results in the biomineralization of a thin CdS shell on the PbS core with a resultant blue-shift in optical properties. The photoluminescence peak shifts to 980 nm, consistent with the expected decrease in band gap energy of a PbS–CdS core–shell heterostructured quantum dot. HAADF-STEM imaging confirms the crystalline structure and size of the particles with complimentary XEDS analysis confirming the presence of Cd, Pb, and S in individual nanocrystals. Integration of these QDs into QDSSCs yields open circuit potentials of 0.43 V and 0.59 V for PbS and PbS–CdS, respectively, consistent with expectations for these materials and previously reported values for chemically synthesized QDs.
منابع مشابه
حساس سازی همزمان سلولهای خورشیدی نقاط کوانتومی متشکل ازفوتوآند نانوبلوری TiO2 با نانوذرات CdS و PbS و بررسی تأثیر نقاط کوانتومی PbS بر عملکرد سلول خورشیدی
In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized throug...
متن کاملSensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion l...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملRestricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کامل